
Umbrella: A Portable Environment Creator for
Reproducible Computing on Clusters, Clouds, and Grids

Haiyan Meng and Douglas Thain
Department of Computer Science and Engineering, University of Notre Dame

{hmeng|dthain}@nd.edu

ABSTRACT
Environment configuration is a significant challenge in large scale
computing. An application that runs correctly on one carefully-
prepared machine may fail completely on another machine, cre-
ating wasted effort and serious concerns about long-term repro-
ducibility. Virtual machines and system containers provide a partial
solution to this problem, in that they allow for the accurate recon-
struction of an entire computing environment. However, when used
directly, they have the dual problems of significant overhead and a
lack of portability. To avoid this problem, we present Umbrella, a
tool for specifying and materializing comprehensive execution en-
vironments from the hardware all the way up to software and data.
A user simply invokes Umbrella with the desired task, and Um-
brella determines the minimum mechanism necessary to run the
task - direct execution, a system container, a local virtual machine,
or submission to a cloud or grid environment. We present the over-
all design of Umbrella and demonstrate its use to precisely exe-
cute a high energy physics application across many platforms us-
ing combinations of chroot, Docker, Parrot, Condor, and Amazon
EC2.

Keywords
execution environment, reproducible computing, containers, virtu-
alization

1. INTRODUCTION
An application that runs correctly on one carefully-prepared ma-

chine may fail completely on another machine, creating wasted ef-
fort and serious reproducibility concerns. The reason for the failure
may be incompatible hardware, mismatched kernel versions, dif-
ferent operating systems, missing software dependencies, wrong
software versions, or just incorrect environment variables. When
problems like this arise, the end user must spend considerable ef-
fort determining the nature of the incompatibility and applying the
fix. It is often not immediately obvious if the problem is due to
something simple like an incorrect environment variable, or some-
thing fundamental such as an incompatible kernel.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
VTDC’15, June 15, 2015, Portland, Oregon, USA.
Copyright c© 2015 ACM 978-1-4503-3573-7/15/06 ...$15.00.
DOI: http://dx.doi.org/10.1145/2755979.2755982.

The problem becomes even more daunting when we consider
large scale scientific computing. A user that wishes to harness hun-
dreds to thousands of machines for a high-throughput computing
job must confront this problem over and over again. If they have
access to local resources, a high performance computing center,
and a cloud provider, then porting and debugging must be repeated
each time the user chooses a new platform, or the provider changes
the underlying platform. In the most extreme case, a wide-area
computing grid such as OSG [15] or a volunteer computing system
such as BOINC [1] may provide a different environment on every
single machine in the system.

The same problem may be seen in the light of portability across
time. A given user may design an application on their desktop com-
puter with a particular architecture, kernel, and OS distribution in
2015. One year later, it is likely that the architecture and kernel
are the same, but the operating system has been updated (automati-
cally) to a new version which may not be compatible with the appli-
cation. Two years later, it is likely that the kernel and distribution
have both changed. Five years later, perhaps the architecture has
changed! Will the same application continue to run across all of
these changes?

This problem is felt keenly in the high energy physics commu-
nity, where hundreds of thousands of machines at multiple institu-
tions over multiple years must be harnessed to carry out the nec-
essary simulation and data analysis for the LHC. For example, a
current version of the CMS [13] analysis codes requires the use of
Linux kernel 2.6.32 running 64-bit Red Hat 6.5 and the CMS soft-
ware stack which is distributed by CVMFS [2]. While attempting
to run this application at the University of Notre Dame via Con-
dor [18], we observed that, out of 4157 machines available, only
112 had the precise OS and kernel expected, and only a handful
had the FUSE modules necessary to mount the CVMFS filesystem,
leaving thousands of machines unharnessed.

Virtualization technology of various kinds can be helpful in solv-
ing this problem. Where available, whole-machine virtualization
can be used to deploy a new kernel, OS, and software; container-
based virtualization can be used to deploy a new OS and software
on a compatible kernel; sandbox-based virtualization can be used
to attach software and data to the filesystem image. However, each
technology has tradeoffs in performance, required privilege, and
usability, no single technology may be universally available across
a heterogeneous system, nor (we expect) across long time scales.
Furthermore, when the host machine already has the necessary en-
vironment, the user should not pay the penalty of virtualization.

To address this problem, we have created Umbrella, a tool for
specifying and materializing execution environments, from the hard-
ware all the way up to software and data. The end user gives a
declarative specification of the desired execution environment, en-

Figure 1: Architecture of Umbrella - Local Execution Engine

compassing the hardware, kernel, OS, software, data, and environ-
ment variables, without being tied down to a single virtualization
technology. Umbrella accepts the execution environment specifi-
cation from the user, observes the environment already present on
the given machine, and provisions the desired environment using
available mechanisms. In addition, Umbrella works with grid and
cloud environments, using the end user’s specification to select ap-
propriate resources. Ultimately, the user’s job will be executed in
the desired environment, whether it is found locally on the ma-
chine, a container system constructed through sandbox techniques
like Docker [14], chroot [5], Parrot [17], or a virtual machine con-
structed through VMware [20].

In this paper, we present the design and implementation of Um-
brella. We use a CMS application to demonstrate the syntax of the
environment specification, the resource matching procedure, and
the materialization of the execution environment. To demonstrate
that the Umbrella specification is indeed technology neutral, we
show that the same application run successfully through three dif-
ferent sandbox technologies and two different distributed systems,
observing the performance tradeoffs achieved. Finally, we use Um-
brella to run thousands of tasks across our campus Condor pool,
using Umbrella to shape each machine into a consistent local exe-
cution environment.

2. ARCHITECTURE
Workflow of Umbrella. To use Umbrella, the user first com-

poses a specification to specify the execution environment for the
application, and submits the specification, the task, the input files
(if any), and the output directory to Umbrella. Umbrella parses the
specification, checks the feasibility of the execution environment
by examining the underlying execution engines. If no execution
engine can provide the required environment, Umbrella suggests
the user review the specification. If the specification is feasible,
Umbrella figures out an execution node, determines the matching
degree between the specification and the execution node, down-
loads the missing dependencies from the remote archive into the
local cache with the help of the metadata database. Then Umbrella
creates a sandbox and executes the task within it. Finally, Umbrella
puts the output and results into the output directory.

Components of Umbrella Umbrella contains five parts: user in-
puts, Umbrella, underlying execution engines, remote archive and
metadata database. User inputs include the specification, the task

Figure 2: Specification Example - CMS Data Analysis
Umbrella allows a user to specify a dependency in two ways:
unique identifier (one referent) and attribute description (a class
of referents). The only except is the environ section, which has a
fixed syntax: <env_name>:<env_value>.

command, the input files, and the output directory. Umbrella con-
nects the user’s execution environment specification with the un-
derlying execution engines, which includes local resources, clus-
ters, cloud resources, and grid resources. The remote archive stores
the OS images, software dependencies and data dependencies. The
metadata database maintains the mapping relationship between the
dependency name referred in the specification and the actual stor-
age location within the remote archive.

Local Execution Engine. Figure 1 shows the architecture of
Umbrella using the local machine as the execution engine. Um-
brella first determines the matching degree between the specifica-
tion and the local machine. Then, the missing dependencies, which
can be OS, software or data, will be downloaded into the local
cache. All the dependencies specified in the specification will be
grouped together and a sandbox technology (such as Parrot, ch-
root, or Docker) will be used to execute the task. Finally a post
processing stage responds to reclaim the sandbox and ensure the
output is put into the output directory specified by the user.

Specification. The specification lists all the information about
the execution environment, which can be divided into six cate-
gories: hardware, kernel, OS, software, data, and environment vari-
ables. For each category, a dependency can be named by using
a unique identifier, by giving the attributes of the dependency, or
both. A unique identifier (id="e5f3cd") makes it possible to
precisely state which object in a repository must be used, but makes
it more difficult to understand the intent of the user and provide al-
ternate, compatible implementations. Attribute description of a de-
pendency (version="6.5") allows for more flexible matching,
but introduces the possibility of variations between runs. The user

Figure 3: Umbrella Uses Varying Degrees of Virtualization
Umbrella deploys the minimum virtualization technology necessary to achieve the desired environment. (S1) If the host machine is fully
compatible, the task is run directly. (S2) If the OS is compatible but some additional software or data are needed, Parrot is used to deliver
the files. (S3) If only the kernel is compatible, Docker is used to deliver the operating system. (S4) If the kernel is not compatible, a virtual
machine is created.

may select whichever method best meets their needs.
Figure 2 shows the specification for a CMS physics application.
The hardware section indicates the required CPU architecture,

the CPU model, the CPU flags, the number of cores and the amount
of memory, disk and other hardware requirements. The id attribute
allows the user to specify an hardware through its unique identifier
like a serial number.

The kernel section defines the type and version of the operat-
ing system kernel, which may be a single value or a range. The user
also can specify a unique kernel image through the id attribute,
which may be the checksum of an kernel image.

The os section provides the name and version information of
the operating system, which includes the system software in the
root filesystem, apart from the kernel. The user also can specify a
unique root filesystem through the id attribute, which can be its
checksum.

The software section provides the software name, version,
platform of each required software package. The id attribute al-
lows the user to specify a software package uniquely, which can
be its checksum. The mountpoint attribute specifies the mount
point of each software package, which will be added into the envi-
ronment variables of the sandbox created for the user’s task. The
mountpoint attribute is the access path known to the application,
and is different from the storage location of the package on the local
file system, which is inside the local cache directory of Umbrella.

The data section indicates the necessary data dependencies,
and their mount points. Similarly, the id attribute allows the user
to specify a data package uniquely.

The environ section sets the environment variables for an ap-
plication.

Sections of the specification may be omitted, meaning that the
requirement is unknown, and Umbrella will use whatever is avail-
able.

Evaluation of Matching Degree At runtime, Umbrella evalu-
ates the local execution environment to see if it is compatible with
the specification. Umbrella evaluates the hardware resources avail-

able, the kernel and OS distribution, and the software and data de-
pendencies. It then selects the mechanism necessary to deliver the
desired environment.

The uname system call provides the hardware architecture and
kernel information of the host machine. Python module os and
multiprocessing provide the filesystem metadata including
the free disk space and the CPU information of the host machine
respectively. The free utility provides the memory usage of the
host machine. If the specification provides the id attribute in the
os section, Umbrella directly downloads the OS images from the
archive, without checking the OS of the host machine. Other-
wise, Umbrella checks the OS of the host machine with the help
of uname and system configuration files.

The existence checking of software dependencies is difficult due
to the diversity of the package sources, which may be installed by
package managers, or downloaded from some websites in binary
format, or even compiled from scratch on the host machine. Differ-
ent settings of compilation and PATH environment variable make
it even worse. Umbrella checks whether the required software is
installed by the package manager on the local machine, and the
consistency between the version installed by the package manager
and the required one. If it fails, Umbrella downloads the software
dependency from the remote archive.

The existence checking of data dependencies on the local ma-
chine is also difficult due to the access permission, file size, file
format, and the usage of symbolic links. In addition, the data de-
pendencies on the local machine may be changed deliberately or by
accident. To use the data dependencies on the local machine means
that a verification process is needed every time the dependencies
are mentioned in a specification. Currently, Umbrella assumes all
the data dependencies are missing on the local machine, and down-
loads them from the remote archive.

Figure 3 shows an example of four specifications (S1-S4) that
result in different runtime deployments.

In the best case (S1), the hardware, kernel, OS, software, and
even data dependencies are all ready for direct usage, Umbrella

directly executes the task on the root filesystem and execution en-
vironment of the host machine without any modification.

In the case of S2 where the hardware, kernel, and OS are all
ready, and only the software and data dependencies are missing,
Umbrella downloads the necessary software and data dependen-
cies into the local cache on the local machine, sets the environment
variables to make the downloaded software dependencies available,
then runs the task within a sandbox. If Umbrella is run with root
privileges, then a combination of mount and chroot facilities
are sufficient to create a namespace for the application. If not, then
Umbrella can use Parrot to intercept system calls and achieve the
same effect.

In the case of S3 where only the hardware and kernel are satis-
fied, Umbrella downloads the OS images, together with all the soft-
ware and data dependencies, into the local cache, and constructs an
entirely new root filesystem containing the OS image. The appli-
cation must then be run in this sandbox, using system level virtu-
alization such as KVM [10] or Docker if the facilities are installed
and available. If not, Parrot can again be used to redirect the entire
filesystem image of an application, albeit at increased cost.

In the worst case (S4), even the kernel does not match the re-
quirement, Umbrella can use hardware virtualization technologies
such as VMware to create a Type II VM [6] on the host machine,
then download the necessary software and data dependencies, and
run the task within the VM.

Remote Archive The remote archive is a resource pool, which
includes OS images for different hardware platforms, kernels, and
OS distributions, software dependencies for different hardware plat-
forms, and data dependencies. All the current available network
resources can be part of the remote archive and directly used by
Umbrella.

To minimize the execution environment construction time, each
software dependency should be pre-built and configured. To im-
prove the portability of archived software, software dependencies
should conform to common-used internal organizations - a bin
subdirectory for all the executables, etc for all the configurations,
lib for all the libraries, doc for all the documents, and so on.

Local Cache One cache directory will be set on each execu-
tion node involved in the execution engine to avoid download the
same data from the remote archive repeatedly. Umbrella down-
loads and caches OS images, software dependencies, and data de-
pendencies in the host machine, and then creates a sandbox to
execute the application. To enable software reusability by mul-
tiple users, Umbrella constructs the sandbox for each application
through mounting-based sandbox techniques (Section 3). Figure 4
shows the relationship between the remote archive, the local cache
and the sandbox for each application. Sandbox 1 uses the root
filesystem of the host machine as the root filesystem and mounts the
needed software and data dependencies (A and G) into it. Sandbox
2 needs to construct a separate root filesystem which groups to-
gether the needed OS image (C), software dependency (A).

Metadata Database A metadata database is set up to map the
software name known to the user to the actual storage location,
which will be queried by Umbrella. The metadata database also
maintains the checksum and size for each archived data to verify the
integrity. The granularity is set to each OS image, each software,
or each dataset to avoid the storage and management overhead of
metadata. Figure 5 shows the metadata for two archived software.
The source attribute maintains a list of optional data resources to
guarantee the data availability.

Umbrella separates the software and data known to the user from
the delivery methods. For example, for the CMS application from
Figure 2, the user specifies CMSSW as a software dependency,

Figure 4: Mounting Mechanism

Figure 5: Metadata Database

without specifying how the software should be delivered. Umbrella
determines the delivery method according to the execution engine.
If Parrot is chosen, the virtual filesystem feature of Parrot will be
used to access CVMFS, and the delivery method will be CVMFS,
which includes a repository for CMMSW. If Docker is chosen, the
archived software package will be delivered to the execution node
by HTTPS.

Example The command for the CMS application is shown as fol-
lows. -T option specifies the execution engine type, config op-
tion specifies the specification file, inputs option specifies the in-
put files in the format of <local-path>=<sandbox-path>,
localdir option specifies the directory where all the data will
be cached and the sandbox will be created, output option spec-
ifies the output directory for the application, and the task itself is
put at the end of the command inside a pair of double quotes after
run parameter. localdir option is only meaningful for the lo-
cal execution engine. All the input files are copied into the sandbox
directory for later usage, however, the output directory is mounted
into the root filesystem of the sandbox.

umbrella -T local --config cms.json
--inputs ’/home/1/cmd1=cms_cmd’
--localdir /tmp
--output /tmp/cms_output
run "/bin/bash cms_cmd"

3. SANDBOX TECHNIQUES
To construct a separate root filesystem combining an OS image,

software and data dependencies (if any), sandbox techniques are
needed. There are two different implementations of a sandbox.

One solution is to trap an application’s file I/O system calls via
the Linux ptrace debugging interface, and replacing the file ac-

1. The local machine runs Umbrella
2. Umbrella consults the EC2 Resource DB for AMI and instance
type, and starts an instance
3. Umbrella sends the task to the instance
4. The instance calls Umbrella locally
5. A sandbox is created to finish the task on the instance
6. The results and output are sent back to the local machine

Figure 6: Workflow of Cloud Execution Engine - EC2

1. The local machine runs Umbrella
2. Umbrella constructs a Condor submit file, and submits the job
to the schedd process of Condor
3. Condor schedules the job to one execution node
4. The execution node calls Umbrella locally
5. A sandbox is created to finish the task on the execution node
6. The results and output are sent back to the local machine

Figure 7: Workflow of Grid Execution Engines - Condor

cess path with the desired path. One example is Parrot, a virtual
filesystem access tool which has been used to attach existing pro-
grams to a variety of remote I/O systems, such as HTTP, FTP, and
CVMFS.

The other solution is OS-level virtualization, which allows mul-
tiple userspace instances to run on top of the same kernel concur-
rently. One example of this solution is chroot, which changes the
root directory for the current process and its children by creating a
chroot jail. Within a chroot jail, the process can not see the files
outside the jail. Another example of this solution is LXC, which
isolates the file system mount points and creates a separate file sys-
tem layout for a group of processes. LXC uses mount namespace
to create a separate root file system layout for every container, and
also utilizes cgroups (Control Groups) to isolate and account re-
source usage of different process groups.

4. CLOUD AND GRID INTEGRATION
As described so far, the primary job of Umbrella is to config-

ure the local execution environment on one machine. However,
the same specification of the environment also serves to select ma-
chines in a distributed environment. To this end, Umbrella can also
submit tasks to a cloud or grid environment. In this configuration,
one instance of Umbrella submits a job with appropriate require-
ments. The job itself consists of another instance of Umbrella
which configures the local execution environment, and then runs
the desired task. In the current implementation, Umbrella supports
execution on Amazon EC2 and Condor.

Cloud Execution Engine - EC2 The specification for an ap-
plication can be easily mapped to the EC2 resources: the hard-
ware architecture and OS distribution information can be mapped
to AMI(s), the cores, memory, disk requirements can be mapped
to instance types. The AMI and EC2 instance type information are
stored in a database, as shown in Figure 8. The AMI, and its root
device type, virtualization type, and default user account are main-
tained for each OS image.

Figure 6 shows the workflow of the EC2 execution engine. Um-
brella first determines the AMI and instance type according to the
specification and the EC2 resource database, and starts an instance,
then Umbrella sends the task, together with a copy of Umbrella, to
the instance, which will run Umbrella locally to finish the task.

Grid Execution Engine - Condor The specification can also be

Figure 8: EC2 Resource Database

easily mapped to the job class advertisement attributes of Condor,
whereby the Umbrella command can be translated into a Condor
submit file. The hardware, kernel, OS, software dependencies can
be expressed in a requirement command, the task name can
be expressed in an executable command, the task parameters
can be expressed in an arguments command, the input files and
output directory can be expressed in transfer_input_files
and transfer_output_files commands. Once the Condor
job is submitted, Umbrella gives the control to Condor, which re-
sponds to find a matched node and schedule the job to it.

Figure 7 shows the workflow of the Condor execution engine.
Umbrella first checks whether the Condor execution engine has
available resources to satisfy the user’s requirements through the
Condor APIs. If yes, Umbrella translates the requirements into a
Condor submit file and then submits the job to Condor, where an-
other instance of Umbrella runs, as in the EC2 case.

Summary Integrating cloud and grid into Umbrella makes it
portable and improves the possibility of executing an application
successfully. However, Umbrella does not try to change the inter-
nal principle of cloud or grid, instead it utilizes their current inter-
faces directly. If an execution engine takes care of job scheduling
and monitoring, such as Condor, Umbrella just needs to submit a
Condor job and wait for the result. If an execution engine does not
support job scheduling and monitoring, like EC2, then Umbrella
needs to respond for them.

Figure 9: Time Overhead of Three Sandbox Techniques
Sandbox Matching Software Sandbox Application Post Total Access

Technique Evaluation Preparation Construction Execution Processing Time authority
Parrot <1s 2m 11s <1s 5m 34s <1s 7m 45s any user
chroot <1s 2m 11s <1s 4m 33s <1s 6m 44s only root
Docker <1s 2m 11s 1m 24s 4m 35s 3s 8m 13s docker group users

Hardware Architecture: x86_64; Kernel: 3.10.0; OS: RHEL 7.0; CPUs: 4; Memory: 2GB; Free Disk: 12GB; Network: 1 Gb/s

Figure 10: Space Overhead - CMS Data Analysis
Type Description Size
input specification <1KB
input CMS script <1KB
os RHEL 6.5 1.8GB
software cmssw 327MB
software Parrot 28MB
data CMS event 18MB
output ROOT file 64MB
output analysis log 2.1MB

5. EVALUATION
Umbrella is written in Python 2.6 and currently uses the Condor

CLI (Command Line Interface) and Amazon EC2 CLI.
We evaluated the time and space overhead of different execution

engines (the local machine, Condor and Amazon EC2), and com-
pared different sandbox techniques (Parrot, chroot and Docker) us-
ing the CMS physics application whose specification is shown in
Figure 2. We showed the heterogeneity of the Notre Dame Con-
dor Pool - hardware, kernel, OS, Linux distribution and software,
ran 1000 CMS applications through the Condor Pool, and showed
the distribution of the execution time and execution nodes of these
applications. The CMS application takes about 5 minutes on a
perfect-configured machine where all the software and data depen-
dencies are ready.

Local Execution Engine To illustrate the time and space over-
head of running applications through the local execution engine of
Umbrella, we ran the CMS application on a machine which only
satisfies the hardware and kernel requirements. The local execu-
tion engine downloads the missing dependencies - the OS image,
software and data - from the archive, and has three options - Par-
rot, chroot, and Docker - to construct the sandbox to execute the
application.

Figure 9 illustrates the time distribution of running the appli-
cation using the three different sandbox techniques, which do the
same thing during the Matching Evaluation and the Software Prepa-
ration stage and behave differently in the remaining three stages.
Docker needs a longer time for the Sandbox Construction stage, be-
cause docker import reads and copies the OS image directory
from the local cache into the docker image storage directory, which
by default is /var/lib/docker. During the Post Processing
stage, Docker needs to remove all the modifications introduced by
the container and finally remove the container. Depending on a
copy-on-write filesystem makes this stage longer than Parrot and
chroot. Executing the application using Parrot takes longer time
than Docker and chroot, because Parrot uses system call trapping
via ptrace, which is slow.

Figure 10 shows the space overhead of each execution. Totally,
the dependencies are 2.16GB, including OS, software, and data.
The inputs include the CMS script and a specification describing
the execution environment. The outputs include a ROOT file and

Figure 11: Time Overhead - Cloud Execution Engine
Subtask Time
Start an EC2 Instance 6s
Send Task to VM 2s
Remote Execution 6m 40s
Post Processing 4s

Figure 12: Time Overhead - Grid Execution Engine
Subtask Time
Submit File Construction <1s
Condor Job Submission <1s
Remote Execution 6m 20s
Post Processing <1s

the analysis log, totalling 66MB.
Cloud Execution Engine Figure 11 illustrates the time distri-

bution of running the CMS application using the EC2 execution
engine. Umbrella first maps the specification to EC2 AMI and in-
stance type, then start an instance using the Amazon EC2 CLI. The
following communication between Umbrella and the instance bases
on SSH and SCP. During the remote execution procedure, the in-
stance calls Umbrella locally and finishes the application through
the available minimal mechanism.

Condor Execution Engine Figure 12 illustrates the time distri-
bution of running the CMS application using the Condor execution
engine. The time used to construct the submit file and submit the
job into Condor is tiny. After the job is submitted, Condor takes
over the job, and finds an available machine to execute the job.
The configuration of the execution node affects the execution logic
and execution time. The Post Processing procedure of the Condor
execution engine is faster than that of the EC2 execution engine,
because Condor responds to transfer the result and output back to
the local machine, but Umbrella needs to actively pull the result
and output from the EC2 instance.

6. UMBRELLA AT SCALE
Finally, we demonstrate the use of Umbrella to run several thou-

sand tasks consistently on a highly heterogeneous environment.
Figure 13 illustrates the heterogeneity of the Notre Dame Con-
dor Pool - hardware, kernel, OS, Linux distribution, and software.
Among the whole pool, it is difficult to find a machine where the
CMS application shown in Figure 2 can run directly. The num-
ber of machines satisfying the hardware and kernel requirements is
large, but the OS, software, and data requirements shrink the avail-
able machines considerably. The two virtualization technologies
available on the pool are Parrot (on all machines) and Docker (on
50 machines)

Using Umbrella, we submitted 1000 different instances of the
CMS application to this Condor pool, differing only in the data
section of the specification, to control the input files. One round

Figure 13: Heterogeneity of the ND Condor Pool
Attribute Description
machine number 4157
hardware architecture x86_64, i386, i686
kernel version 25 kernels (2.6.18 - 3.10.0)
OS Linux, Mac
Linux distribution RHEL, Debian, CentOS
RHEL versions 5.5, 5.9, 5.10, 5.11, 6.4, 6.5, 6.6, 7.0
CPU number 1, 2, 4, 8, 12, 16, 24, 32, 64
memory size Max: 1TB, Min: 984 MB
disk size Max: 1.7TB, Min: 5GB
docker support 50 out of 4157 have docker installed
CVMFS support 2 out of 4157 has CVMFS installed

Figure 14: Execution Time Comparison of Parrot and Docker
Case Type Total Time Fastest Slowest Average

1 Parrot 7158m 4m 12s 11m 53s 7m 09s
2 Docker 8589m 4m 24s 13m 58s 8m 35s

of 1000 jobs was submitted, directed to use Parrot, then the same
set of 1000 jobs was submitted again, directed to use Docker. We
compared the output pairs in each round to ensure that both cases
produced the same output.

Figure 14 shows the minimal, maximal and average execution
time in both cases. Figure 15 shows the distribution of the execu-
tion time of the 1000 jobs when the execution nodes use Parrot.
Due to the heterogeneity of the Condor pool and the possibility of
being evicted of a running job, the execution time varies from 4
minutes to 12 minutes, which depends on the configuration of the
execution node. Totally, 165 machines were utilized to finish all
the jobs. Figure 16 illustrates the execution time distribution of
the 1000 jobs when the execution nodes use Docker to construct
sandboxes. All the jobs can finish successfully, even though about
2 minutes is needed to import the OS image into a Docker im-
age. The portability of Docker makes more computing resources
available, and makes the overhead of importing images acceptable.
Totally, 25 machines were utilized to finish all the jobs.

As can be seen, Parrot and Docker have very similar minimum
and maximum times, but the Parrot average was more than a minute
faster. The Docker execution times also have a much greater spread
in performance, despite all running on identical machines. Our best
explanation is that the process of generating container images is
very disk and memory intensive, and this can cause contention with
other tasks running on the machine. The performance of Parrot is
somewhat more compact because it is able to combine the names-
paces of the underlying objects at runtime without copying or trans-
forming images. For a longer running application, we would expect
to see better runtimes for Docker, which does not have the general
system call overhead of Parrot.

Regardless of the performance, the experiment demonstrates that
Umbrella can effectively express and deliver the desired execution
environment independently of the technology available on a given
machine or a given time. Inherent in the specification is the as-
sumption that multiple namespaces can be efficiently merged at
runtime, and we believe this to be a fruitful avenue for future virtu-
alization technologies.

7. RELATED WORK
Software configuration management systems [4] like Chef and

Figure 15: Distribution of Execution Time - Parrot

0

50

100

150

200

250

300

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

C
o
u

n
t

Execution Time (minutes)

Figure 16: Distribution of Execution Time - Docker

0

50

100

150

200

250

300

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

C
o
u

n
t

Execution Time (minutes)

Puppet [8] allows the users to list the application dependencies
and configurations and then deploys the configurations automati-
cally. However, software configuration management systems are
designed to help system administrators to accomplish uniform and
automatic deployment of configurations on multiple nodes and al-
lows system administrators to have better control of system states.

V-MCS [16] was proposed to ease the configuration procedure
of virtual machines. Execution environment management frame-
works, such as FutureGrid [19], Grid’5000 [3] and VMPlants [11],
were proposed to ease the execution environment configuration for
grid computing. FutureGrid even allows the experiments to be re-
producible through recording the user and system actions. How-
ever, the environment construction in these systems are accom-
plished either by a virtual appliance or by the combination of a
base virtual machine image and a series of configuration steps. Pre-
serving and delivering the whole software stack through virtual ma-
chines is expensive, because two virtual machine images may share
a large amount of common files. In this paper, we try to explore
how to allow the user to specify the execution environment through
hardware, kernel, OS, software, data, and environment variables.
The hierarchical specification model allows one dependency to be
shared by multiple applications.

VM (Virtual Machine) [6] emulates the behavior of a particular
computer system through hardware virtualization. A lot of IaaS (In-
frastructure as a Service) providers, such as Amazon EC2 [9] and
Microsoft Azure [12], allow their customers to use VMs for differ-

ent OSs directly without deploying them by themselves. However,
a VM provided by these IaaS providers is a clean execution envi-
ronment. The user must deploy the execution environment for an
application before doing anything else.

Containers [21] provide multiple isolated execution instances on
top of the same kernel through OS-level virtualization, such as
Docker [14]. However, container techniques may require special
features introduced by a later kernel version, and is not an option
for applications which rely on older kernels.

Parrot [17] and CDE [7] treats software the same as data, and
generates a portable package including all the files accessed by
an application with the help of the ptrace debugging interface.
However, two packages may share a lot of common file dependen-
cies. Setting the granularity to each file also makes the metadata
management and deduplication complex.

8. CONCLUSIONS AND FUTURE WORK
In this paper, we propose Umbrella, a tool for specifying com-

prehensive execution environments in an organized way, from the
hardware all the way up to software and data, and materializing the
execution environment during runtime with the minimum mecha-
nism, which can be local direct execution, a system container, a
local VM, or submission to a cloud or grid environment. The orga-
nized Umbrella specification is light-weight, and makes an appli-
cation portable and reproducible.

In the following work, we plan to optimize the organization and
management of the archive to improve the scalability and the stor-
age efficiency. Correspondingly, the retrieval interface exposed by
the archive also needs to be optimized to allow the user to explore
the archived packages.

Acknowledgments
This work was supported in part by National Science Foundation
grants PHY-1247316 (DASPOS), OCI-1148330 (SI2) and PHY-
1312842. The University of Notre Dame Center for Research Com-
puting scientists provided critical technical assistance throughout
this research effort.

9. REFERENCES
[1] D. P. Anderson. BOINC: A System for Public-Resource

Computing and Storage. In Proceedings of the 5th
IEEE/ACM International Workshop on Grid Computing,
GRID ’04, pages 4–10, Washington, DC, USA, 2004. IEEE
Computer Society.

[2] J. Blomer, P. Buncic, and T. Fuhrmann. CernVM-FS:
delivering scientific software to globally distributed
computing resources. In Proceedings of the first
international workshop on Network-aware data
management, pages 49–56. ACM, 2011.

[3] R. Bolze, F. Cappello, E. Caron, M. Daydé, F. Desprez,
E. Jeannot, Y. Jégou, S. Lanteri, J. Leduc, N. Melab, et al.
Grid’5000: a large scale and highly reconfigurable
experimental grid testbed. International Journal of High
Performance Computing Applications, 20(4):481–494, 2006.

[4] J. Estublier. Software configuration management: a roadmap.
In Proceedings of the Conference on the Future of Software
Engineering, pages 279–289. ACM, 2000.

[5] S. Friedl. Go directly to jail: Secure untrusted applications
with chroot. Linux Magazine, pages 2002–12, 2002.

[6] R. P. Goldberg. Survey of virtual machine research.
Computer, 7(6):34–45, 1974.

[7] P. J. Guo and D. R. Engler. CDE: Using System Call
Interposition to Automatically Create Portable Software
Packages. In USENIX Annual Technical Conference, 2011.

[8] L. Kanies. Puppet: Next-generation configuration
management. The USENIX Magazine, 31(1):19–25, 2006.

[9] S. Khatua and N. Mukherjee. A Novel Checkpointing
Scheme for Amazon EC2 Spot Instances. 2014 14th
IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing, 0:180–181, 2013.

[10] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori.
kvm: the Linux virtual machine monitor. In Proceedings of
the Linux Symposium, volume 1, pages 225–230, 2007.

[11] I. Krsul, A. Ganguly, J. Zhang, J. A. Fortes, and R. J.
Figueiredo. Vmplants: Providing and managing virtual
machine execution environments for grid computing. In
Supercomputing, 2004. Proceedings of the ACM/IEEE
SC2004 Conference, pages 7–7. IEEE, 2004.

[12] A. Lenk, M. Klems, J. Nimis, S. Tai, and T. Sandholm.
What’s inside the Cloud? An architectural map of the Cloud
landscape. In Proceedings of the 2009 ICSE Workshop on
Software Engineering Challenges of Cloud Computing,
pages 23–31. IEEE Computer Society, 2009.

[13] R. McClatchey. The CMS experiment at the CERN LHC.
The Journal of Instrumentation, 3(S08004), 2008.

[14] D. Merkel. Docker: Lightweight Linux Containers for
Consistent Development and Deployment. Linux J.,
2014(239), Mar. 2014.

[15] R. Pordes, D. Petravick, B. Kramer, D. Olson, M. Livny,
A. Roy, P. Avery, K. Blackburn, T. Wenaus, F. Würthwein,
et al. The open science grid. In Journal of Physics:
Conference Series, volume 78, page 012057. IOP Publishing,
2007.

[16] X.-H. Sun, C. Du, H. Zou, Y. Chen, and P. Shukla. V-mcs: A
configuration system for virtual machines. In Cluster
Computing and Workshops, 2009. CLUSTER’09. IEEE
International Conference on, pages 1–7. IEEE, 2009.

[17] D. Thain and M. Livny. Parrot: An application environment
for data-intensive computing. Scalable Computing: Practice
and Experience, 6(3):9–18, 2005.

[18] D. Thain, T. Tannenbaum, and M. Livny. Condor and the
Grid. Grid computing: Making the global infrastructure a
reality, pages 299–335, 2003.

[19] G. Von Laszewski, G. C. Fox, F. Wang, A. J. Younge,
A. Kulshrestha, G. G. Pike, W. Smith, J. Voeckler, R. J.
Figueiredo, J. Fortes, et al. Design of the futuregrid
experiment management framework. In Gateway computing
environments workshop (GCE), pages 1–10, 2010.

[20] C. A. Waldspurger. Memory Resource Management in
VMware ESX Server. SIGOPS Oper. Syst. Rev.,
36(SI):181–194, Dec. 2002.

[21] M. G. Xavier, M. V. Neves, F. D. Rossi, T. C. Ferreto,
T. Lange, and C. A. De Rose. Performance evaluation of
container-based virtualization for high performance
computing environments. In Parallel, Distributed and
Network-Based Processing (PDP), 2013 21st Euromicro
International Conference on, pages 233–240. IEEE, 2013.

