

CERN IT Department CH-1211 Genève 23 Switzerland **www.cern.ch/it**

Data & Storage Services

(Physics) Archival Storage Status and Experiences at CERN

Joint DASPOS / DPHEP7 Workshop 22 March 2013

Germán Cancio Tapes, Archives and Backup Data Storage Services Group – IT-CERN

CERN

Department

(*) with input from J. Iven / L. Mascetti / A. Peters for disk ops

Agenda

- Overview of physics storage solutions
 - CASTOR and EOS
 - Reliability
- Data preservation on the CASTOR (Tape) Archive
 - Archive verification
 - Tape mount rates, media wear and longevity
 - Multiple tape copies
 - Other risks
- Outlook
 - Tape market evolution
 - Media migration (repacking)
 - R&D for archiving
- Conclusions

Physics Storage Solutions

Two complementary services:

- CASTOR
 - Physics data storage for LHC and non-LHC experiments active or not
 - COMPASS, NA48, NA61/2, AMS, NTOF, ISOLDE, LEP
 - HSM system with disk cache and tape backend
 - Long-lived and custodial storage of (massive amounts of) files
 - In prod since 2001, many incarnations, data imported from previous solutions (ie. SHIFT)

EOS

- Low-latency, high-concurrency disk pool system deployed in 2011
- Physics analysis for O(1000) (end-)users
- Tunable reliability on cheap HW multiple copies on disk (no tape) no "unique" data
- Quota system no "endless" space
- "Disk only" pools moving from CASTOR to EOS

Other storage solutions

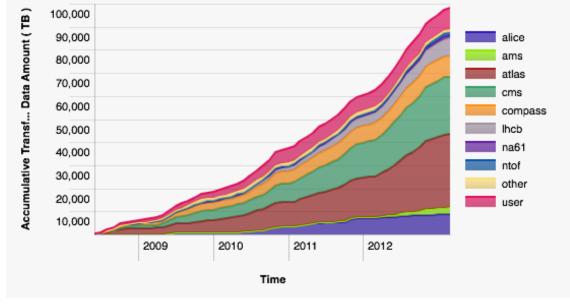
- AFS/DFS, Backup/TSM
- R&D: Hadoop, S3,..

1k | TSM concurrency AFS 10^{9} files CASTOR EOS AFS CASTOR EOS 10⁶ local TSM 10 - local h ms s PΒ ΤВ space latency

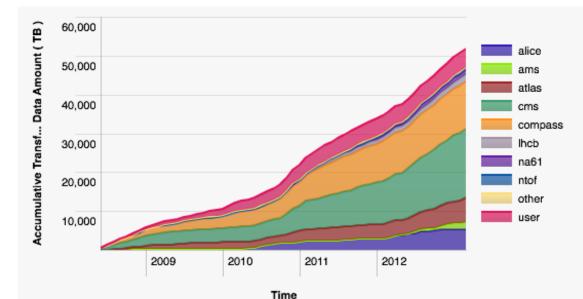
CASTOR archive in Numbers

Data:

88PB (74PiB) of data on tape; 245M files over 48K tapes Average file size ~360MB 1.5 .. 4.6 PB new data per month Up to 6.9GB/s to tape during HI period


Lifetime of data: infinite

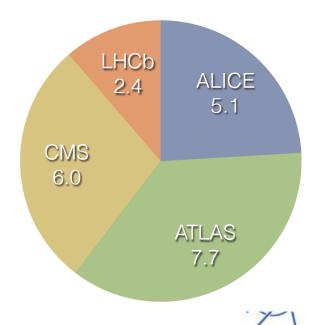
Infrastructure:


- ~ 52K tapes (1TB, 4TB, 5TB)
- 7 libraries (IBM and Oracle) 65K slots 90 production + 20 legacy enterprise drives 15PB disk cache (staging + user access) on ~750 disk servers

CERN

Department

EOS in Numbers

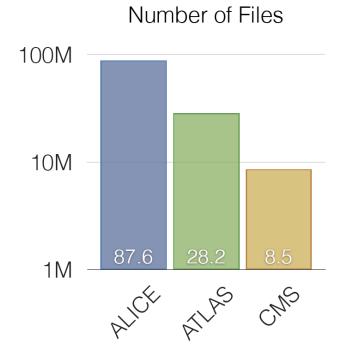

CERN

RRDTOOL

TOBI OETIKER

EOSALICE - numberoffilesinthenamespace - last year 100 M 80 M 60 M 40 M 20 M Jun Aug Feb May Jul Sep 0ct Nov Dec Jan Mar aver:42.70M max:90.35M min:2.39M curr: 90.35M 22-03-2013 10:49:41

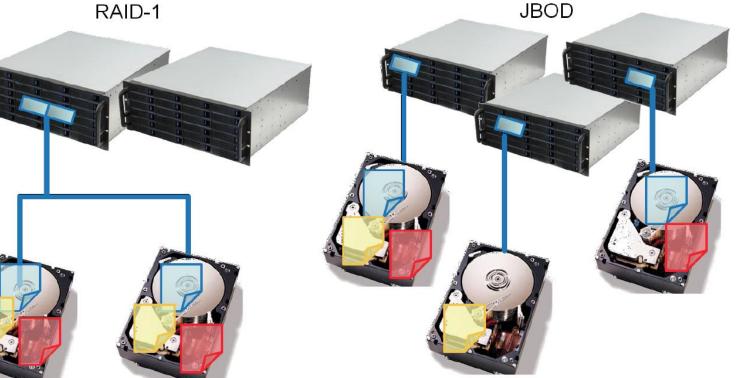
Installed (usable) capacity



Data: ~15 PB of data stored ~ 125M files Average file size ~120MB ~8K-25K concurrent clients

Infrastructure: ~ 850 disk servers Installed raw disk capacity: ~40PB (usable: ~20PB)

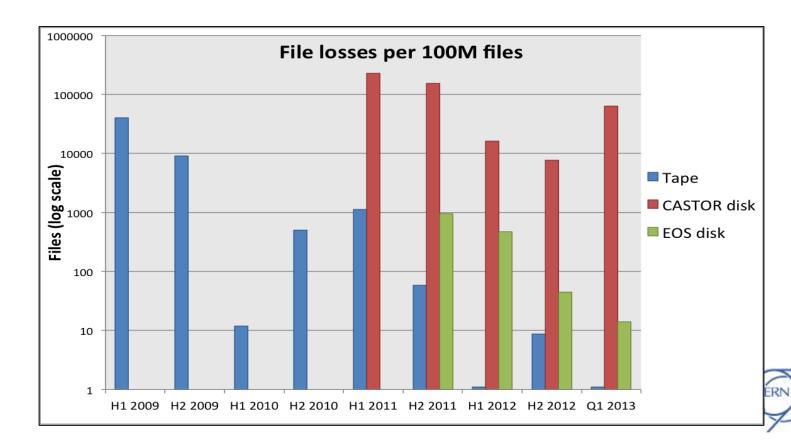
Disk server setup differences


CERN Advanced STORage manager

RAID-1

CERN

Department



Reliability

- File loss is unavoidable and needs to be factored in at all stages
- Good news: it has been getting better for both disk and tape
- Disk storage reliability greatly increased by EOS over CASTOR disk
 - RAID-1 does not protect against controller or machine problems, file system corruptions and finger trouble
- Tape reliability still ~O(1) higher than EOS disk
 - Note: single tape copy vs. 2 copies on disk

Agenda

- Overview of physics storage solutions
 - CASTOR and EOS
 - Reliability

• Data preservation on the CASTOR (Tape) Archive

- Archive verification
- Tape mount rates, media wear and longevity
- Multiple tape copies
- Other risks
- Outlook
 - Tape market evolution
 - Media migration (repacking)
 - R&D for archiving
- Conclusions

G. Cancio DPHEP7

Slide 9

Tape archive verification

CERN**IT** Department

Data in the archive cannot just be written and forgotten about.

- Q: can you retrieve my file?
- A: let me check... err, sorry, we lost it.

Proactive and regular verification of archive data required

- Ensure cartridges can be mounted
- Check data can be read+verified against metadata (checksum/size, ...)
- Do not wait until media migration to detect problems

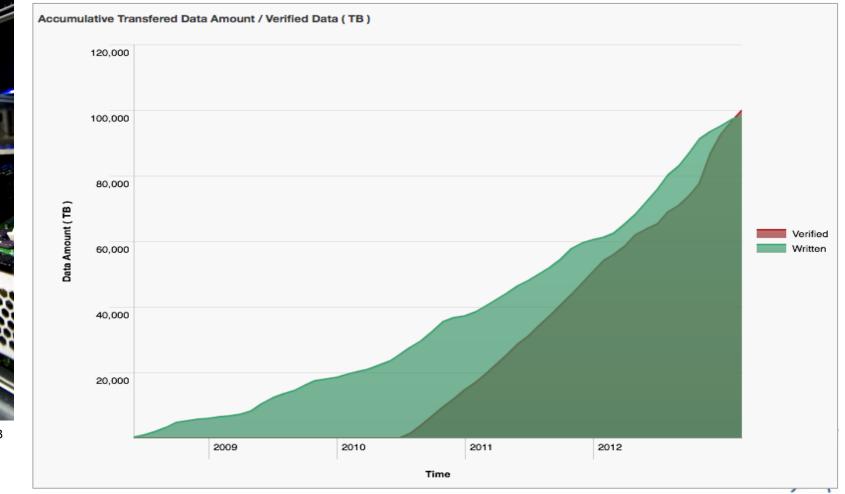
Several commercial solutions available on the market

- Difficult integration with our application
- Not always check your metadata

CERN

In 2010, implemented and deployed a background scanning engine:

- Read back all newly filled tapes
- Scan the whole archive over time, starting with least recent accessed tapes



Up to 10-12 drives (~10%) for verification @ 90% efficiency

CERN

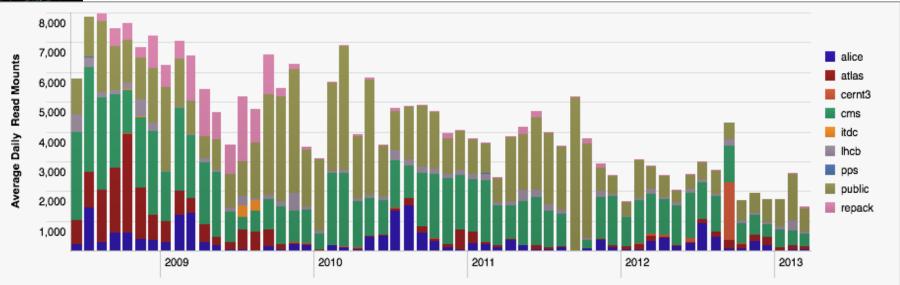
Department

- Turnaround time: ~2.6 years @ ~1.26GB/s
- Data loss: ~ 65GB lost over 69 tapes

Increasing media / robotics longevity

- CASTOR was designed as a "classic" file-based HSM. If user file is not on disk -> recall it from tape ASAP
 - Experiment data sets can be spread over hundreds of tapes
 - Many tapes get (re)mounted but files read is very low (1-2 files)
 - Every mount is wasted drive time (~2 min for mounting / unmounting).
 - Mount/unmount times are not improving with new technology
 - Many drives used -> reduced drive availability (ie for writes)
- Mounting and unmounting is the highest risk operation for tapes, robotics and drives.
 - Mechanical (robotics) failure can affect access to a large amount of media.
- Technology evolution moves against HSM:
 - Bigger tapes -> more files -> more mounts per tape -> reduced media lifetime

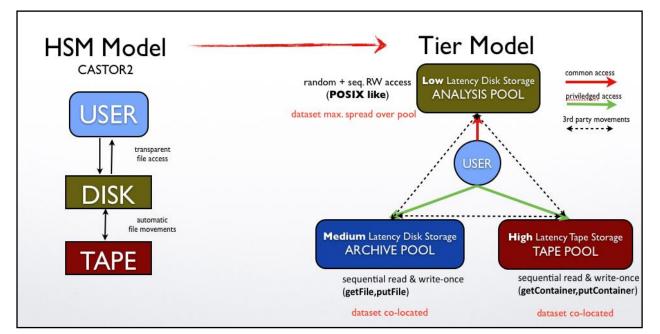
CERI


Department

CER

Tape mount rate reduction

- Deployed "traffic lights" to throttle and prioritise tape mounts
 - Thresholds for minimum volume, max wait time, concurrent drive usage, group related requests
- Developed monitoring for identifying inefficient tape users, encourage them to use bulk pre-staging on disk
- Work with experiments to migrate end-user analysis to EOS as mostly consisting in random access patterns
- Tape mount rates have decreased by over 50% since 2010, despite increased volume and traffic

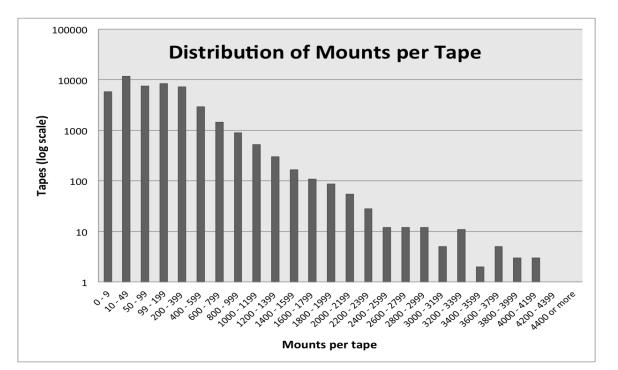

Time

HSM model limitations

- HSM model showing its limits
 - Enforcing "traffic lights" and increasing disk caches not sufficient
 - ... even if 99% of required data is on disk, mount rates can be huge for missing 1%!
- Ultimate strategy: move away from "transparent", file/user based HSM
 - Remove / reduce tape access rights from (end) users
 - Move end users to EOS
 - Increase tape storage granularity from files to data (sub)sets (Freight-train approach) managed by production managers

Model change from HSM to more loosely coupled Data Tiers

- Using CASTOR == Archive, EOS == Analysis Pool

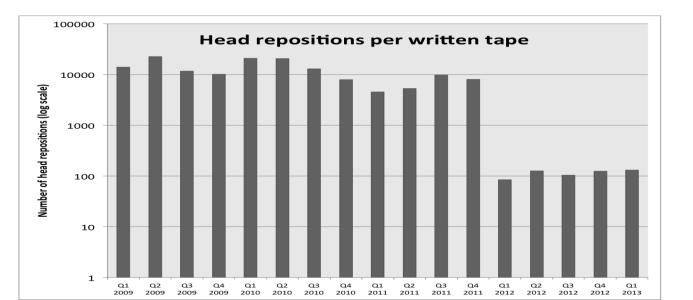

Department

CERN-IT/DSS/TAB G. Cancio DPHEP7 Slide **14**

Addressing media wear

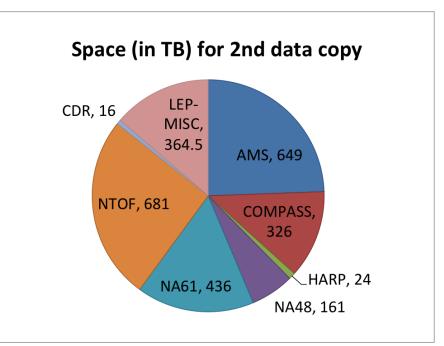
CERN**IT** Department

- With "traffic lights" in place, average daily repeated tape mount rates are down to ~2-3 / day.
 - Monitoring disables tapes mounted "too frequently" + operators notified.
- Also, introduced automated decommissioning of media mounted >= 5000 times
 - Tape gets disabled and ticket generated for media repacking



Avoiding "shoe-shining"

- Media wear also happens when writing small files to tape
 - By default, tape flushes buffers after close() of a tape file -> stop motion and rewind to end of last file ("head reposition")
 - CASTOR uses ANSI AUL as tape format: 3 tape files per CASTOR file!
 - Performance (and media life time) killer in particular with new-generation drives (higher density -> more files)
- Can be avoided by using file aggregations (requires tape format change)
- Alternative found: logical (or "buffered") tape marks
 - Prototyped by CERN, now fully integrated in Linux kernel
 - Synchronize only every 32GB worth of data
- Reduced number of head repositions from ~10000/tape to ~100/tape



CERN-IT/DSS/TAB G. Cancio DPHEP7 Slide **16**

Multiple file copies

- By default, only one copy of a file is stored on tape.
- If justified, second copies can be generated on different tapes (or even different libraries)
- Typically the case for experiments where data is stored only at CERN and/or legacy experiments
- Around 2.6PB of additional space (3% of total space)

Other risks...

ERN**IT** Department

Many other risks for data integrity to be aware of:

- Security break-ins
 - Strong authentication deployed on CASTOR... eventually
- Finger trouble
 - nsrm -rf /castor/cern.ch/opal/rawd/ test/blahblah
 - If noticed "quickly", metadata can be restored (manual work)
- Bugs, misconfigurations, devops misalignment
 - <u>ALICE incident 2010</u>: routing production files to test tape pools being recycled
 - Meta(data) was restored, but some tapes had been recycled -> data loss
 - Test tape pool recycling decommissioned since
 - Stopped automated media repacking (defragmentation)
 - Disasters affecting CC equipment integrity
 - Planes crashing in (none so far...)
 - Water leaks (had one <u>exactly over a STK silo in 2004</u>)
 - etc...

Agenda

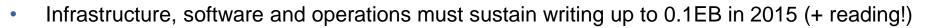
- Overview of physics storage solutions
 - CASTOR and EOS
 - Reliability
- Data preservation on the CASTOR (Tape) Archive
 - Archive verification
 - Tape mount rates, media wear and longevity
 - Multiple tape copies
 - Other risks
- Outlook
 - Tape market evolution
 - Media migration (repacking)
 - R&D for archiving
- Conclusions

Outlook: Tape market evolution

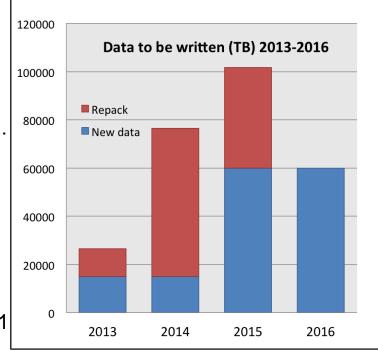
- Tape technology getting a push forward
 - Drive generations last released

Vendor	Name	Capacity	Speed	Туре	Date
LTO consortium(*)	LTO-6	2.5TB	160MB/s	Commodity	12/2012
Oracle	T10000C	5.5TB	240MB/s	Enterprise	03/2011
IBM	TS1140	4TB	240MB/s	Enterprise	06/2011

- Vendor roadmaps exist for additional 2-3 generations, up to 20TB / tape (~2016-17) (+70% capacity / year) – new generations expected 2013/14
- 35/50TB tape demonstrations in 2010 (IBM/Fuji/Maxell); 125-200TB tapes being investigated by IBM
- Tape market evolving from NEARLINE to ARCHIVING
 - Increased per-tape capacity and transfer speed
 - Little or no increases for mounting/positioning unsuitable for random access
 - Small-to-medium backup market shrinking (de-duplication, disk-only)
 - Large-scale archive/backup market building up (legal, media, cloud providers
 Google: ~6-10EB?)


Department

(*) LTO consortium: HP/IBM/Quantum/Tandberg (drives); Fuji/Imation/Maxell/Sony (media)



Outlook: Media repacking

- Mass media migration or "repacking" required for
 - Higher-density media generations, and / or
 - Higher-density tape drives (enterprise media rewriting)
 - Liberating tape library slots
- Media itself can last for 30 years, but not the infrastructure!
- Repack exercise is proportional to the total size of archive and not to the fresh or active data
- Next Repack run (expected): 2013/4 2016
 - New drive generations appearing "soon"
 - ~100PB to migrate from over 50'000 cartridges
- Data rates for next repack will exceed LHC data rates..
 - Over 3 GB/s sustained
 - Cf. LHC proton-proton tape data rates : ~1-1.5GB/s
- but we need to share the drives –
 which become the bottleneck
- Will compete with up to 60PB/year data taking after LS1

Outlook: Research and Development

- Older tape data getting "colder" (excluding repacking/verification)
 - Only ~14PB read from tape in 2012; 20K tapes not mounted at all in 12 months (25PB)
 - Excluding data written in 2012 still leaves ~40PB of data not being read
 - Trend likely to continue as "freshest" data being most relevant
 - Not all data requires to be online and/or directly visible
- Fits into the from-HSM-to-Tier model strategy

amazon GLACIER

Department

CER

- Market solutions appearing for cold data archiving
 - Notably Amazon Glacier
 - Service price not competitive for the time being (0.01\$/GB/month storage, 0.1\$/GB retrieval)
 - .. but this may change in the future
 - Appealing approach and API
 - "stripped down S3" WS-based RESTful interface
 - Immutable files, minimal metadata and operations, synchronous upload but asynchronous (high latency) data retrieval
- Investigate potential as simple tape front-end interface
 - Archiving of physics and non-physics data
- Many questions to be addressed (client access, namespace handling, efficient transfer, load balancing, data import and migration, verification etc)

G. Cancio DPHEP7 Slide **22**

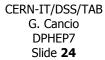
Agenda

- Overview of physics storage solutions
 - CASTOR and EOS
 - Reliability
- Data preservation on the CASTOR (Tape) Archive
 - Archive verification
 - Tape mount rates, media wear and longevity
 - Multiple tape copies
 - Other risks
- Outlook
 - Tape market evolution
 - Media migration (repacking)
 - R&D for archiving
- Conclusions

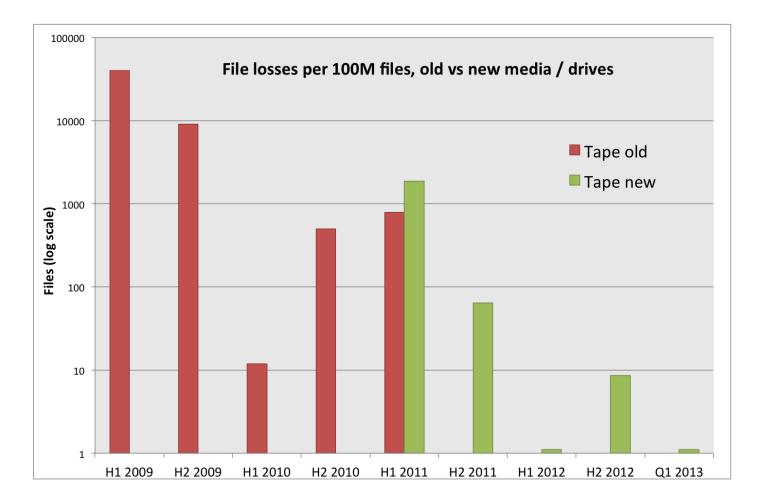
CERN

Conclusions

- Managing a large, PB-scale, tape-backed archive is an active task. The effort is proportional to the total archive size.
- A non-negligible fraction of resources need to be allocated for housekeeping such as migration and verification.
- Tape has a not-so-large *effective* lifetime requiring regular media migration to new generations.
- Reliability and performance requires to separate end-user access from archiving. Continue moving to what tape is really built for: bulk archiving and streaming access.

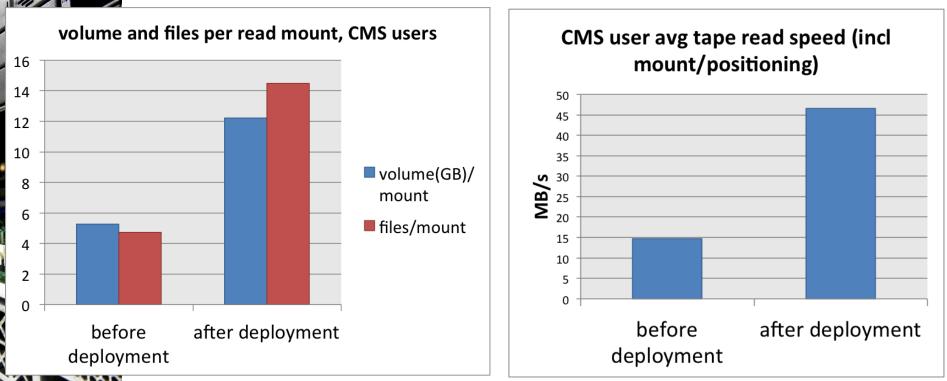

Department

Discussion



Reserve slides

New drive/media generations


CERN-IT/DSS/TAB G. Cancio DPHEP7 Slide **25**

CERN

Department

Tape Reading optimization results

3x files / volume per mount -> 3x increase in effective tape access speed ~50% less tape mounts (~7K to 3.5K mounts per day)

CERN-IT/DSS/TAB G. Cancio DPHEP7 Slide **26**

CERN

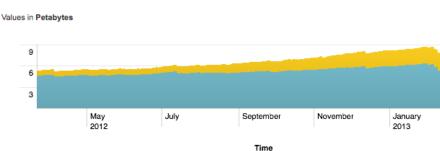
Department

Market: Enterprise vs. LTO

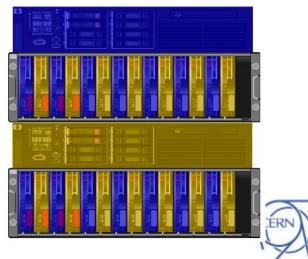
- Tape usage at CERN was heavy-duty requiring enterpriseclass tape equipment from IBM and Oracle
 - With far less demand in terms of "small" file writes and read mounts, "commodity" tape (LTO) becomes a serious option, i.e. for "dusty" archived data which is infrequently accessed
- Market share: LTO (~90%) vs. enterprise media (~2%)
- Completed field testing of a LTO SpectraLogic T-Finity library (max 120 drives, 30K slots)
 - Test drives, library, and vendor support storing 2nd copies of experiment data
 - Test configuration: 5-10 LTO-5 drives, 1000 cartridges (1.5PB)
 - Necessary CASTOR adaptations coded and released
- Satisfactory results in general

TSM key numbers

Data:


- ~ 6.6 PB of data
 - 4.7 PB backup
 - 1.9 PB archives
 - 8K tapes
- Daily traffic: ~75TB
- 2.2B files (112M archive)
 - 1400 client nodes
 - Servers, VM's
 - AFS/DFS
 - Exchange
 - DB

Infrastructure:


CERN-IT/DSS/TAB G. Cancio DPHEP7 Slide **28** 13 new-generation TSM servers (RHES6, TSM6)

Total Data

- 2 server + 2 SAS expanders setup
- 6 legacy TSM5 being decommissioned
 - SAN-disk setup
- 2 IBM TS3500 libraries
 - 24 TS1140 drives
 - 32 TS1130 drives

📕 Backup 📒 Archive

