DONALD PETRAVICK SENIOR PROJECT MANAGER

NCSA/ UNIVERSITY OF ILLINOIS PETRAVIC@ILLINOIS.EDU

PRIMARY RESEARCH OR PRACTICE AREA(S):

PRINCIPLE INVESTIGATOR, DARK ENERGY SURVEY DATA MANAGEMENT

PREVIOUS EXPERIENCE (IF RELATED TO WORKSHOP FOCUS) FERMILAB/ US CMS FERMILAB/ RUN II FERMILAB/ SLOAN DIGITAL SKY SURVEY

RELATED WORK (PROJECTS SPECIFIC TO WORKSHOP WITH WEB-SITES)

DES: <u>HTTP://COSMOLOGY.ILLINOIS.EDU/</u>

CONTACT INFORMATION:

!"#\$%**1** &\$**5678**'%)*+,+'%%!0#!

NCSA Image: Constraint of the second state of the second stat

Don Petravick Senior Project Mgr

National Center for Supercomputing Applications University of Illinois at Urbana-Champaign

Telescope and Iconic Picture

DES Science Summary

Four Probes of Dark Energy

- Galaxy Clusters
 - ~100,000 clusters to z>1
 - Synergy/overlap with SPT
 - Sensitive to growth of structure and geometry
- Weak Lensing
 - Shape measurements of 200 million galaxies
 - Sensitive to growth of structure and geometry

Large-scale Structure (BAO)

- 300 million galaxies to z = 1 and beyond
- Sensitive to geometry
- Supernovae
 - 30 sq deg time-domain survey
 - ~4000 well-sampled SNe Ia to z ~1

Forecast Constraints on DE Equation of State

Factor 3-5 improvement over Stage II DETF Figure of Merit

Sampling Masks.

Figure – DECam Mosaic

Mangle Masking partitions the images into polygons consistent with some set of properties. In DES, mangle tracks image defects, bright objects and depth.

Cluster Weak Lensing

Cluster RXJ2238 at z=0.35

Preliminary cluster mass map from DES SV data

Nature of the DESDM effort:

- ~Decade duration (Concept to finish)
- Survey products are broadly re-useable, though the focus of DES is on dark energy science.
- For dark energy studied, the goal is to support statistical analysis based on the distribution and shape parameters for galaxies.
- Acquiring this data implies
 - Detailed Understanding of instrumental
 - Detailed Understanding of atmospheric signature.
 - Detailed Understanding of science code.
 - Systematic understanding of provenance an relationships between data elements.

Processing the DES Observations Produces:

- Reduced single epoch images.
- Catalogs of single epoch detections.
 - ~250 parameters/detection
- Co-added images.
- Catalogs of co-added Detections.
 - ~250 parameters/band/detection.
- Mangle Masks.
 - Account for the non-uniform sampling of a mosaic camera.
- Super Nova Detections.
- Photometric Red Shifts.
- Weak Lensing Catalogs.

DES Pipelines (top level view)

Data Volumes

- ~10,000,000 CCD images.
 - Images 8 mega-pixel
 - 8 mega-pixels of weights and masks.
- 100 TB of catalogs, w/ billions of object detections, mangle maps, and other data useful for interpretation of the data. Stored in a relational database, as a query capability is needed to provide utility.
- ~40000 "very deep" co-added images.
- 2.5 PB of data.

Beyond the data from DECam, The Analysis Efforts Produces:

- Catalog and other analysis information from cosmology simulations.
 - Production is more compute-intensive than the processing of observational date.
 - Example: Blind Cosmology Challenge:
 - Simulation. given some assumptions about cosmology.
 - Sample that universe as if DECam observed it.
- Combining DES data with data from other surveys.
 - Example VISTA (infrared)
- Value added catalogs provided by Science working groups.

Survey Preservation Requirements

- All DES Science images are archived at NOAO, and made pubic after a year.
- All calibration images from any user of DECam are available.
- Transient information immediately available to the community.
- DESDM reduced images are available after a year @NCSA
- Two Releases of Catalogs@NCSA
- Develop documentation at the level of peer-reviewed papers.

A full system would include

- Technical:
 - Very detailed documentation of all data elements.
 - Including calibrations.
 - Full provenance.
 - Retain instrument and environmental records/ Observer actions
 - Well documented codes in a reasonable technical base.
 - Well documented processes/decisions of the production effort.
 - Inclusion of Value added and other catalogs.
- Support:
 - Suitable access methods.
 - Suitable support.
 - Solid Institution
 - DES data will go to NOAO after the operational period.
 - The University of Illinois is developing a custodial capability in

Summary

- Large investment in the development/application of the acumen needed for a successful survey.
- Use of multi-instrument data is needed in analysis.
 - There are a number of astronomical archive sites.
 - There is a basic body of knowledge and technique in astronomy.
- Underpinning the data are code, calibrations, procedures, instrumental and environmental effects.
- The DES's Current Data Management Plan:
 - Preserves DECam-derived data
 - Preserves acumen at the level of refereed publications.

Example 1: Non-linear crosstalk correction

•Figure 1 :No crosstalk correction applied.

Figure 2: Linear crosstalk correction applied (SN requires that the dark band be gone or masked at ~ 2 DN /pixel), this one is at 7DN/pix. K. Paech (Munich)

Figure 3: Nonlinear crosstalk correction applied (in test). R. Gruendl, NCSA

Example 2: Galaxy Depth

Galaxy photometry Depth: 1 vs. 8 exposures. Requirement is that noise integrates down as ~1/sqrt(N)

N=1

N=8

(E. Rykoff, SLAC)

Database Cluster

- 11 Nodes
- 128 cores
- 736GB RAM
- 135 drives
- 241TB storage
- 6GB SAS2 storage fabric

