Introduction to Data/Analysis Preservation Discussion

For the DASPOS Team
Introduction to DASPOS

- **Data And Software Preservation for Open Science**
 - multi-disciplinary effort recently funded by NSF
 - Notre Dame, Chicago, UIUC, Washington, Nebraska, NYU, (Fermilab, BNL)

- Links HEP effort (DPHEP+experiments) to Biology, Astrophysics, Digital Curation
 - includes physicists, digital librarians, computer scientists
 - aim to achieve some commonality across disciplines in
 - meta-data descriptions of archived data
 - What’s in the data, how can it be used?
 - computational description (ontology development)
 - how was the data processed?
 - can computation replication be automated?
 - impact of access policies on preservation infrastructure
DASPOS Structure

• In parallel, will build test technical infrastructure to implement a knowledge preservation system
 – “scouting party” to figure out where the most pressing problems lie, and some solutions
 • incorporate input from multi-disciplinary dialogue, use-case definitions, policy discussions
 – Will translate needs of analysts into a technical implementation of meta-data specification
 – Will develop means of specifying processing steps and the requirements of external infrastructure (databases, etc.)
 – Will implement “physics query” infrastructure across small-scale distributed network
• end result: “template architecture” for data/software/knowledge preservation systems

21 March, 2013
M. Hildreth - DPHEP7/DASPOS Workshop
DASPOS Plans

• Three “Fact-Gathering” Workshops in 2013:
 – HEP-centric (This Workshop):
 • Can experiments agree on the types of data they would like to preserve?
 – software and analysis preservation, too
 • Can we begin to define some global metadata?
 – Multi-Disciplinary: (Fall, maybe at “Big Data” in October)
 • What are problems, use cases in other fields? (Astro, Bio, etc.)
 • What is the commonality between these and HEP?
 – can we think about common infrastructure?
 – Technical: (TBD)
 • Survey of archival architectures
 • learn from infrastructure work developed for other problems
 • try not to re-invent multiple wheels…
This Session

• Our aim was to get an overview of how different experiments do analysis:
 – What data is required?
 – How many steps of processing are there?
 – How is all of this documented?
 – Is the analysis software archived?
 – ...

• What we are trying to understand is if we can derive a common “data model” for data use and analysis description that might allow people to describe and archive what they did, and do so in a reproducible way
 – purely a fact-gathering exercise

• Another issue: Use cases for data & analysis preservation:
 – What is important for you and your experiment?
 – How might data be used in the future?
Additional Information
List of Questions:

• Disaster Recovery (if so, how fast backup and what is acceptable loss, 1 hour, 1 day, 1 week, etc)
• Reuse
• Reproduce or Recreate (i.e. reimplement algorithms)
• Education
• Short term access, long term access
• Emulation vs. Migration
• Future Research
• Activitivies for raw data, analytical data, algorithms, software, environment (i.e. OS)
• Which activities and what is important to preserve and share in
 – < 2 years
 – < 5 years
 – < 10 years
 – < 20 years